Search results

Search for "bimetallic catalyst" in Full Text gives 5 result(s) in Beilstein Journal of Nanotechnology.

Atomic layer deposition for efficient oxygen evolution reaction at Pt/Ir catalyst layers

  • Stefanie Schlicht,
  • Korcan Percin,
  • Stefanie Kriescher,
  • André Hofer,
  • Claudia Weidlich,
  • Matthias Wessling and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2020, 11, 952–959, doi:10.3762/bjnano.11.79

Graphical Abstract
  • well documented in the literature, and this paper provides a direct comparison under identical experimental conditions of electrochemical measurements and in identical units. In the first method, based on classical engineering, the bimetallic catalyst is deposited by dip-coating in a precursor solution
  • coating. Conclusion We have demonstrated and compared two different methods for preparing a bimetallic catalyst electrode for application in electrochemical energy storage and release in electrolyzer/fuel cells, in vanadium–air redox flow batteries, or in other related devices. The preparation bases on
PDF
Album
Full Research Paper
Published 22 Jun 2020

SO2 gas adsorption on carbon nanomaterials: a comparative study

  • Deepu J. Babu,
  • Divya Puthusseri,
  • Frank G. Kühl,
  • Sherif Okeil,
  • Michael Bruns,
  • Manfred Hampe and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 1782–1792, doi:10.3762/bjnano.9.169

Graphical Abstract
  • vapor deposition [56][57]. The bimetallic catalyst system for the VACNT growth was prepared by depositing a thin layer of aluminum (13–15 nm) over the substrate through thermal evaporation in a vacuum of 10−6 mbar, followed by the sputter deposition of 1.2 nm of an iron catalyst layer. The synthesis was
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell. Keywords: bimetallic catalyst; electrochemical impedance spectroscopy; N-doped carbon; porous carbon–carbon nanotube hybrid; supercapacitor
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

  • Christoph Nick,
  • Sandeep Yadav,
  • Ravi Joshi,
  • Christiane Thielemann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2014, 5, 1575–1579, doi:10.3762/bjnano.5.169

Graphical Abstract
  • development. A thin film bimetallic catalyst layer (10–12 nm Al and 1.0–1.4 nm Fe) was first deposited by using electron beam evaporation onto the substrate following by a removal of the resist. This left spatially deposited islands of catalyst behind. Catalyst annealing and CNT synthesis was subsequently
PDF
Album
Supp Info
Video
Full Research Paper
Published 17 Sep 2014

Liquid fuel cells

  • Grigorii L. Soloveichik

Beilstein J. Nanotechnol. 2014, 5, 1399–1418, doi:10.3762/bjnano.5.153

Graphical Abstract
  • gold in the bimetallic catalyst increases catalytic activity that results in higher cell voltage [129]. A series of intermetallic phases of Pt with In, Sn, Pb, Bi, and As was identified as promising electrocatalysts for oxidation of formic acid with PtBi2 being the most active [68]. The use of a Pt4Mo
PDF
Album
Review
Published 29 Aug 2014
Other Beilstein-Institut Open Science Activities